Skip to main content

SuperML Java - Comprehensive Framework Architecture

SuperML Java - Comprehensive Framework Architecture

🏛️ Executive Summary

SuperML Java is a comprehensive machine learning framework inspired by scikit-learn, consisting of 21 specialized modules implementing 12+ algorithms with neural network support. The framework follows a modular, extensible architecture that supports everything from basic ML tasks to production deployment and Kaggle competitions.

📊 Framework Statistics

  • 21 Modules: Modular architecture with specialized components
  • 12+ Algorithms: Linear models, tree-based, clustering, neural networks
  • 200+ Classes: Comprehensive implementation coverage
  • Production Ready: Inference engine, model persistence, monitoring
  • Neural Networks: MLP, CNN, RNN with specialized preprocessing
  • Kaggle Integration: Competition workflows and automation

🏗️ High-Level System Architecture

┌─────────────────────────────────────────────────────────────────────────────────┐
│                          SuperML Java Framework 2.0.0                          │
│                       (21 Modules • Neural Networks • Production)              │
├─────────────────────────────────────────────────────────────────────────────────┤
│  🎯 APPLICATION LAYER                                                          │
│  ├── Examples & Demos (11 comprehensive examples)                             │
│  ├── AutoML Workflows (AutoTrainer with neural network support)               │
│  ├── Kaggle Integration (Competition automation & ensembles)                  │
│  └── Visualization (XChart GUI + ASCII terminal)                              │
├─────────────────────────────────────────────────────────────────────────────────┤
│  🧠 ALGORITHM LAYER (12+ Implementations)                                     │
│  ├── Linear Models (6)          ├── Tree Models (5)      ├── Neural (3)      │
│  │   ├── LogisticRegression     │   ├── DecisionTree     │   ├── MLP          │
│  │   ├── LinearRegression       │   ├── RandomForest     │   ├── CNN          │
│  │   ├── Ridge                  │   ├── GradientBoosting │   └── RNN/LSTM/GRU │
│  │   ├── Lasso                  │   ├── ExtraTrees       │                     │
│  │   ├── SGDClassifier          │   └── AdaBoost         ├── Clustering (1)   │
│  │   └── SGDRegressor           │                        │   └── KMeans       │
├─────────────────────────────────────────────────────────────────────────────────┤
│  🔧 FRAMEWORK INFRASTRUCTURE                                                   │
│  ├── Core Foundation            ├── Data Processing      ├── Production        │
│  │   ├── Estimator Hierarchy    │   ├── Preprocessing    │   ├── Inference     │
│  │   ├── Pipeline System        │   ├── Feature Eng.     │   ├── Persistence   │
│  │   ├── Parameter Management   │   ├── Datasets         │   ├── Monitoring    │
│  │   └── Validation             │   └── Transformations  │   └── Drift         │
│  │                              │                        │                     │
│  ├── Model Selection            ├── Evaluation           ├── Integration       │
│  │   ├── GridSearchCV           │   ├── Metrics          │   ├── ONNX Export   │
│  │   ├── RandomizedSearch       │   ├── Cross-Validation │   ├── PMML Export   │
│  │   ├── HyperOpt              │   └── Visualization    │   └── REST APIs     │
│  │   └── AutoTrainer            │                        │                     │
└─────────────────────────────────────────────────────────────────────────────────┘

📦 21-Module Detailed Architecture

🏛️ Core Foundation (2 modules)

superml-core

Purpose: Foundation interfaces and base classes for all ML components

org.superml.core/
├── Estimator.java              // Base interface for all ML components
├── SupervisedLearner.java      // Interface for supervised algorithms
├── UnsupervisedLearner.java    // Interface for unsupervised algorithms
├── Classifier.java             // Specialized classification interface
├── Regressor.java              // Specialized regression interface
├── BaseEstimator.java          // Abstract base with common functionality
└── package-info.java           // Module documentation

Key Design Patterns:

  • Estimator Pattern: All components implement fit(), predict(), score()
  • Parameter Management: Consistent getParams(), setParams() methods
  • State Management: fitted flag and validation patterns

superml-utils

Purpose: Shared mathematical utilities and helper functions

org.superml.utils/
├── MathUtils.java              // Statistical and mathematical functions
├── ArrayUtils.java             // Array manipulation utilities
├── ValidationUtils.java        // Input validation helpers
└── Constants.java              // Framework-wide constants

🤖 Algorithm Implementation (4 modules)

superml-linear-models

Purpose: Linear and logistic regression variants

org.superml.linear_model/
├── LinearRegression.java       // Ordinary Least Squares
├── LogisticRegression.java     // Binary + multiclass classification
├── Ridge.java                  // L2 regularized regression
├── Lasso.java                  // L1 regularized regression
├── SGDClassifier.java          // Stochastic Gradient Descent classifier
├── SGDRegressor.java           // Stochastic Gradient Descent regressor
├── SoftmaxRegression.java      // Multinomial logistic regression
└── OneVsRestClassifier.java    // Meta-classifier for multiclass

Algorithm Architecture:

public class LogisticRegression extends BaseEstimator implements Classifier {
    // Hyperparameters
    private double learningRate = 0.01;
    private int maxIter = 1000;
    private double tolerance = 1e-6;
    private double C = 1.0; // Inverse regularization
    
    // Model state
    private double[] weights;
    private double[] classes;
    private boolean fitted = false;
    
    // Multiclass support
    private OneVsRestClassifier multiclassClassifier;
    private SoftmaxRegression softmaxClassifier;
}

superml-tree-models

Purpose: Tree-based algorithms and ensembles

org.superml.tree/
├── DecisionTree.java           // CART algorithm (classification + regression)
├── RandomForest.java           // Bootstrap aggregating ensemble
├── GradientBoosting.java       // Sequential boosting ensemble
├── ExtraTrees.java             // Extremely randomized trees
└── AdaBoost.java               // Adaptive boosting

Tree Architecture Pattern:

public class DecisionTree extends BaseEstimator implements Classifier, Regressor {
    // Tree parameters
    private String criterion = "gini";     // "gini", "entropy", "mse"
    private int maxDepth = Integer.MAX_VALUE;
    private int minSamplesSplit = 2;
    private int minSamplesLeaf = 1;
    
    // Tree structure
    private TreeNode root;
    private double[] classes;
    private boolean isClassification;
    
    // Internal tree node representation
    private static class TreeNode {
        int featureIndex;
        double threshold;
        double prediction;
        TreeNode left, right;
        boolean isLeaf;
    }
}

superml-neural

Purpose: Neural network implementations with specialized architectures

org.superml.neural/
├── MLPClassifier.java          // Multi-layer perceptron
├── CNNClassifier.java          // Convolutional neural network
├── RNNClassifier.java          // Recurrent neural network (LSTM/GRU)
├── BaseNeuralNetwork.java      // Shared neural network functionality
└── activations/
    ├── ActivationFunction.java
    ├── ReLU.java
    ├── Sigmoid.java
    └── Tanh.java

Neural Network Architecture:

public class MLPClassifier extends BaseEstimator implements Classifier {
    // Network architecture
    private int[] hiddenLayerSizes = {100};
    private String activation = "relu";
    private String solver = "adam";
    private double alpha = 0.0001;    // L2 regularization
    
    // Network components
    private List<RealMatrix> weights;
    private List<double[]> biases;
    private List<Double> lossHistory;
    
    // Training configuration
    private int maxIter = 200;
    private double learningRate = 0.001;
    private int batchSize = 32;
    private boolean earlyStopping = false;
}

superml-clustering

Purpose: Unsupervised clustering algorithms

org.superml.clustering/
├── KMeans.java                 // k-means++ clustering
├── DBSCAN.java                 // Density-based clustering
├── AgglomerativeClustering.java // Hierarchical clustering
└── ClusterEvaluator.java       // Cluster quality metrics

🔄 Data Processing (3 modules)

superml-preprocessing

Purpose: Feature transformation and data preprocessing

org.superml.preprocessing/
├── StandardScaler.java         // Z-score normalization
├── MinMaxScaler.java           // Min-max scaling
├── RobustScaler.java           // Median-based scaling
├── LabelEncoder.java           // Categorical encoding
├── OneHotEncoder.java          // One-hot encoding
├── PolynomialFeatures.java     // Polynomial feature generation
├── NeuralNetworkPreprocessor.java // Neural network preprocessing
└── FeatureSelector.java        // Feature selection utilities

Neural Network Preprocessing:

public class NeuralNetworkPreprocessor implements UnsupervisedLearner {
    public enum NetworkType { MLP, CNN, RNN }
    
    private NetworkType networkType;
    private StandardScaler standardScaler;
    private double outlierThreshold = 3.0;
    private double temporalSmoothing = 0.1;
    
    // Network-specific configurations
    public NeuralNetworkPreprocessor configureMLP() {
        // Standardization + outlier clipping for MLPs
        return this;
    }
    
    public NeuralNetworkPreprocessor configureCNN() {
        // Pixel normalization + data augmentation for CNNs
        return this;
    }
    
    public NeuralNetworkPreprocessor configureRNN() {
        // Temporal smoothing + sequence normalization for RNNs
        return this;
    }
}

superml-datasets

Purpose: Built-in datasets and synthetic data generation

org.superml.datasets/
├── DatasetLoader.java          // CSV and data loading utilities
├── SyntheticDataGenerator.java // Generate classification/regression data
├── IrisDataset.java            // Classic iris dataset
├── BostonHousing.java          // Housing price regression
└── DigitsDataset.java          // Handwritten digits (8x8)

superml-model-selection

Purpose: Model selection and hyperparameter tuning

org.superml.model_selection/
├── GridSearchCV.java           // Exhaustive parameter search
├── RandomizedSearchCV.java     // Random parameter search
├── CrossValidator.java         // K-fold cross-validation
├── StratifiedKFold.java        // Stratified sampling
├── TrainTestSplit.java         // Data splitting utilities
└── NeuralNetworkGridSearchCV.java // Neural network hyperparameter tuning

Neural Network Grid Search:

public class NeuralNetworkGridSearchCV {
    public static class StandardGrids {
        public static Map<String, Object[]> mlpGrid() {
            return Map.of(
                "hidden_layer_sizes", new int[][]{ {50}, {100}, {100, 50}, {200, 100, 50} },
                "activation", new String[]{"relu", "tanh"},
                "learning_rate", new double[]{0.001, 0.01, 0.1},
                "alpha", new double[]{0.0001, 0.001, 0.01}
            );
        }
        
        public static Map<String, Object[]> cnnGrid() {
            return Map.of(
                "filters", new int[]{16, 32, 64},
                "kernel_size", new int[]{3, 5},
                "learning_rate", new double[]{0.001, 0.01}
            );
        }
    }
}

🔧 Workflow Management (2 modules)

superml-pipeline

Purpose: ML pipelines and workflow automation

org.superml.pipeline/
├── Pipeline.java               // Sklearn-style pipeline
├── PipelineStep.java           // Individual pipeline component
├── NeuralNetworkPipelineFactory.java // Neural network pipeline factory
└── utils/
    ├── PipelineValidator.java  // Pipeline validation
    └── PipelineSerializer.java // Pipeline persistence

Pipeline Architecture:

public class Pipeline extends BaseEstimator implements SupervisedLearner {
    private List<PipelineStep> steps;
    private Map<String, Estimator> namedSteps;
    
    public Pipeline addStep(String name, Estimator estimator) {
        steps.add(new PipelineStep(name, estimator));
        namedSteps.put(name, estimator);
        return this;
    }
    
    @Override
    public Pipeline fit(double[][] X, double[] y) {
        double[][] currentX = X;
        
        // Fit all transformers sequentially
        for (int i = 0; i < steps.size() - 1; i++) {
            Estimator estimator = steps.get(i).estimator;
            if (estimator instanceof UnsupervisedLearner) {
                UnsupervisedLearner transformer = (UnsupervisedLearner) estimator;
                transformer.fit(currentX);
                currentX = transformer.transform(currentX);
            }
        }
        
        // Fit final estimator
        Estimator finalEstimator = getFinalEstimator();
        if (finalEstimator instanceof SupervisedLearner) {
            ((SupervisedLearner) finalEstimator).fit(currentX, y);
        }
        
        fitted = true;
        return this;
    }
}

Neural Network Pipeline Factory:

public class NeuralNetworkPipelineFactory {
    public static Pipeline createMLPPipeline(int[] hiddenLayers, String activation, 
                                           double learningRate, int epochs) {
        return new Pipeline()
            .addStep("preprocessor", new NeuralNetworkPreprocessor(NetworkType.MLP).configureMLP())
            .addStep("mlp", new MLPClassifier()
                .setHiddenLayerSizes(hiddenLayers)
                .setActivation(activation)
                .setLearningRate(learningRate)
                .setMaxIter(epochs));
    }
    
    public static Pipeline createCNNPipeline(int height, int width, int channels,
                                           double learningRate, int epochs) {
        return new Pipeline()
            .addStep("preprocessor", new NeuralNetworkPreprocessor(NetworkType.CNN).configureCNN())
            .addStep("cnn", new CNNClassifier()
                .setInputShape(height, width, channels)
                .setLearningRate(learningRate)
                .setMaxIter(epochs));
    }
}

superml-autotrainer

Purpose: Automated machine learning and model selection

org.superml.autotrainer/
├── AutoTrainer.java            // Main AutoML orchestrator
├── ModelSelector.java          // Algorithm selection logic
├── HyperparameterOptimizer.java // Automated hyperparameter tuning
├── NeuralNetworkAutoTrainer.java // Neural network AutoML
└── strategies/
    ├── GridSearchStrategy.java
    ├── RandomSearchStrategy.java
    └── BayesianOptimization.java

Neural Network AutoTrainer:

public class NeuralNetworkAutoTrainer {
    public static class AutoTrainerConfig {
        public final String taskType;        // "binary_classification", "multiclass", "regression"
        public final String dataType;        // "tabular", "image", "sequence"
        public final String optimizationMetric; // "accuracy", "f1", "auc", "rmse"
        public final int maxTrainingTime;    // seconds
        public final int maxModels;          // maximum models to try
        public final boolean enableEnsemble;
    }
    
    public static AutoTrainerResult autoTrain(double[][] X, double[] y, AutoTrainerConfig config) {
        List<ModelCandidate> candidates = new ArrayList<>();
        
        // Try different architectures based on data type
        candidates.addAll(tryMLPArchitectures(X, y, config));
        
        if ("image".equals(config.dataType)) {
            candidates.addAll(tryCNNArchitectures(X, y, config));
        }
        
        if ("sequence".equals(config.dataType)) {
            candidates.addAll(tryRNNArchitectures(X, y, config));
        }
        
        // Select best model and retrain on full dataset
        ModelCandidate best = selectBestModel(candidates, config.optimizationMetric);
        Estimator finalModel = retrainBestModel(best, X, y);
        
        return new AutoTrainerResult(finalModel, best.metrics, candidates, 
                                   best.architecture, System.currentTimeMillis());
    }
}

📊 Evaluation & Monitoring (3 modules)

superml-metrics

Purpose: Comprehensive evaluation metrics for all algorithm types

org.superml.metrics/
├── Metrics.java                // Base metrics class
├── ClassificationMetrics.java  // Precision, recall, F1, AUC
├── RegressionMetrics.java      // MSE, MAE, R²
├── ClusteringMetrics.java      // Silhouette, adjusted rand index
├── NeuralNetworkMetrics.java   // Neural network specific metrics
└── utils/
    ├── ConfusionMatrix.java    // Confusion matrix utilities
    └── ROCCurve.java           // ROC curve analysis

Neural Network Metrics:

public class NeuralNetworkMetrics {
    public static double binaryCrossEntropy(double[] yTrue, double[] yPred) {
        double loss = 0.0;
        for (int i = 0; i < yTrue.length; i++) {
            double p = Math.max(1e-15, Math.min(1 - 1e-15, yPred[i]));
            loss += yTrue[i] * Math.log(p) + (1 - yTrue[i]) * Math.log(1 - p);
        }
        return -loss / yTrue.length;
    }
    
    public static double categoricalCrossEntropy(double[] yTrue, double[] yPred) {
        double loss = 0.0;
        for (int i = 0; i < yTrue.length; i++) {
            double p = Math.max(1e-15, yPred[i]);
            loss += yTrue[i] * Math.log(p);
        }
        return -loss / yTrue.length;
    }
    
    public static Map<String, Double> comprehensiveMetrics(double[] yTrue, double[] yPred, String taskType) {
        Map<String, Double> metrics = new HashMap<>();
        
        switch (taskType) {
            case "binary_classification":
                metrics.put("accuracy", Metrics.accuracy(yTrue, yPred));
                metrics.put("precision", Metrics.precision(yTrue, yPred));
                metrics.put("recall", Metrics.recall(yTrue, yPred));
                metrics.put("f1_score", Metrics.f1Score(yTrue, yPred));
                metrics.put("binary_crossentropy", binaryCrossEntropy(yTrue, yPred));
                break;
            case "multiclass":
                metrics.put("accuracy", Metrics.accuracy(yTrue, yPred));
                metrics.put("categorical_crossentropy", categoricalCrossEntropy(yTrue, yPred));
                break;
            case "regression":
                metrics.put("mse", meanSquaredError(yTrue, yPred));
                metrics.put("mae", meanAbsoluteError(yTrue, yPred));
                metrics.put("r2", Metrics.r2Score(yTrue, yPred));
                break;
        }
        
        return metrics;
    }
}

superml-visualization

Purpose: Dual-mode visualization (GUI + Terminal)

org.superml.visualization/
├── PlotManager.java            // Main plotting interface
├── gui/
   ├── XChartPlotter.java      // Professional GUI plots
   ├── ScatterPlot.java        // Scatter plot implementation
   └── LinePlot.java           // Line plot implementation
├── ascii/
   ├── ASCIIPlotter.java       // Terminal-based plots
   ├── ASCIIHistogram.java     // ASCII histogram
   └── ASCIIScatter.java       // ASCII scatter plot
└── NeuralNetworkVisualizer.java // Neural network specific plots

superml-drift

Purpose: Model drift detection and monitoring

org.superml.drift/
├── DriftDetector.java          // Main drift detection interface
├── DataDriftDetector.java      // Statistical data drift detection
├── ModelDriftDetector.java     // Model performance drift
├── ConceptDriftDetector.java   // Concept drift detection
└── monitoring/
    ├── DriftMonitor.java       // Continuous monitoring
    └── DriftAlert.java         // Alert system

🚀 Production & Infrastructure (4 modules)

superml-inference

Purpose: High-performance model serving and inference

org.superml.inference/
├── InferenceEngine.java        // Main inference orchestrator
├── BatchInferenceProcessor.java // Batch processing
├── StreamingInference.java     // Real-time inference
├── ModelCache.java             // Model caching system
├── NeuralNetworkInferenceEngine.java // Neural network inference
└── serving/
    ├── ModelServer.java        // HTTP model server
    └── InferenceAPI.java       // REST API endpoints

Neural Network Inference Engine:

public class NeuralNetworkInferenceEngine {
    public static class InferenceConfig {
        public final boolean enablePreprocessing;
        public final int batchSize;
        public final int timeoutMs;
        public final int parallelThreads;
        
        public InferenceConfig(boolean enablePreprocessing, int batchSize, int timeoutMs) {
            this.enablePreprocessing = enablePreprocessing;
            this.batchSize = batchSize;
            this.timeoutMs = timeoutMs;
            this.parallelThreads = Runtime.getRuntime().availableProcessors();
        }
    }
    
    public static InferenceResult batchInference(Estimator model, double[][] X, InferenceConfig config) {
        long startTime = System.currentTimeMillis();
        
        // Preprocess if enabled
        double[][] processedX = X;
        if (config.enablePreprocessing && model instanceof MLPClassifier) {
            NeuralNetworkPreprocessor preprocessor = new NeuralNetworkPreprocessor(NetworkType.MLP).configureMLP();
            preprocessor.fit(X);
            processedX = preprocessor.transform(X);
        }
        
        // Perform inference
        double[] predictions;
        if (model instanceof Classifier) {
            predictions = ((Classifier) model).predict(processedX);
        } else if (model instanceof Regressor) {
            predictions = ((Regressor) model).predict(processedX);
        } else {
            throw new IllegalArgumentException("Unsupported model type for inference");
        }
        
        long inferenceTime = System.currentTimeMillis() - startTime;
        return new InferenceResult(predictions, null, inferenceTime, processedX.length);
    }
}

superml-persistence

Purpose: Model serialization and persistence

org.superml.persistence/
├── ModelPersistence.java       // Main persistence interface
├── ModelSerializer.java        // Binary serialization
├── ModelMetadata.java          // Model metadata management
└── formats/
    ├── JavaSerialization.java  // Native Java serialization
    ├── JSONSerialization.java  // JSON format
    └── CustomFormat.java       // Custom binary format

superml-onnx

Purpose: ONNX model export for cross-platform deployment

org.superml.onnx/
├── ONNXExporter.java           // Main ONNX export interface
├── ModelConverter.java         // Algorithm to ONNX conversion
└── exporters/
    ├── LinearModelExporter.java
    ├── TreeModelExporter.java
    └── NeuralNetworkExporter.java

superml-pmml

Purpose: PMML model exchange format

org.superml.pmml/
├── PMMLExporter.java           // PMML export functionality
├── PMMLImporter.java           // PMML import functionality
└── converters/
    ├── LogisticRegressionPMML.java
    ├── DecisionTreePMML.java
    └── RandomForestPMML.java

🌐 External Integration (2 modules)

superml-kaggle

Purpose: Kaggle competition automation and workflows

org.superml.kaggle/
├── KaggleClient.java           // Kaggle API client
├── DatasetDownloader.java      // Competition data download
├── SubmissionManager.java      // Submission automation
├── NeuralNetworkKaggleHelper.java // Neural network competition utilities
└── workflows/
    ├── CompetitionWorkflow.java // End-to-end competition pipeline
    ├── EnsembleCreator.java     // Model ensemble creation
    └── FeatureEngineering.java  // Automated feature engineering

Neural Network Kaggle Helper:

public class NeuralNetworkKaggleHelper {
    public static class CompetitionResult {
        public final List<Estimator> models;
        public final Map<String, Double> scores;
        public final String bestArchitecture;
        public final long trainingTime;
        
        public List<Estimator> getModels() { return models; }
    }
    
    public static CompetitionResult trainCompetitionModels(double[][] X, double[] y, String competitionType) {
        List<Estimator> models = new ArrayList<>();
        Map<String, Double> scores = new HashMap<>();
        
        // Train multiple neural network architectures
        models.add(trainMLPModel(X, y, competitionType));
        models.add(trainCNNModel(X, y, competitionType));
        models.add(trainRNNModel(X, y, competitionType));
        
        // Evaluate each model
        for (Estimator model : models) {
            double score = evaluateModel(model, X, y, competitionType);
            scores.put(model.getClass().getSimpleName(), score);
        }
        
        String bestArchitecture = selectBestArchitecture(scores);
        return new CompetitionResult(models, scores, bestArchitecture, System.currentTimeMillis());
    }
}

📚 Distribution & Examples (3 modules)

superml-examples

Purpose: Comprehensive usage examples and tutorials

org.superml.examples/
├── BasicClassification.java    // Simple classification example
├── MulticlassExample.java      // Multiclass classification
├── RegressionExample.java      // Regression walkthrough
├── PipelineExample.java        // Advanced pipeline usage
├── ModelSelectionExample.java  // Hyperparameter tuning
├── KaggleIntegration.java      // Competition workflow
├── InferenceExample.java       // Production inference
├── NeuralNetworkExample.java   // Neural network usage
├── AutoTrainerExample.java     // AutoML demonstration
├── VisualizationExample.java   // Plotting and visualization
└── ProductionExample.java      // End-to-end production pipeline

superml-bundle-all

Purpose: Complete framework distribution

<dependency>
    <groupId>org.superml</groupId>
    <artifactId>superml-bundle-all</artifactId>
    <version>2.1.0</version>
</dependency>

superml-java-parent

Purpose: Maven build coordination and dependency management


🔧 Core Design Patterns

1. Estimator Pattern

All ML components follow the consistent estimator pattern:

public interface Estimator {
    Map<String, Object> getParams();
    Estimator setParams(Map<String, Object> params);
    boolean isFitted();
    void validateParameters();
}

public interface SupervisedLearner extends Estimator {
    SupervisedLearner fit(double[][] X, double[] y);
    double[] predict(double[][] X);
    double score(double[][] X, double[] y);
}

2. Pipeline Pattern

Components compose seamlessly in processing pipelines:

var pipeline = new Pipeline()
    .addStep("scaler", new StandardScaler())
    .addStep("selector", new FeatureSelector())
    .addStep("classifier", new LogisticRegression());

pipeline.fit(X_train, y_train);
double[] predictions = pipeline.predict(X_test);

3. Factory Pattern

Specialized factories for complex object creation:

// Neural network pipelines
Pipeline mlpPipeline = NeuralNetworkPipelineFactory.createMLPPipeline(
    new int[]{128, 64}, "relu", 0.001, 100);

// Automated model selection
AutoTrainerResult result = NeuralNetworkAutoTrainer.autoTrain(X, y, config);

4. Strategy Pattern

Pluggable algorithms and optimization strategies:

// Different optimization strategies
public enum OptimizationStrategy {
    GRID_SEARCH, RANDOM_SEARCH, BAYESIAN_OPTIMIZATION
}

// Different neural network cell types
public enum CellType {
    SIMPLE_RNN, LSTM, GRU
}

🧠 Neural Network Architecture

SuperML Java provides comprehensive neural network support with three main architectures:

MLP (Multi-Layer Perceptron)

MLPClassifier mlp = new MLPClassifier()
    .setHiddenLayerSizes(new int[]{128, 64, 32})
    .setActivation("relu")
    .setSolver("adam")
    .setLearningRate(0.001)
    .setMaxIter(200)
    .setEarlyStopping(true);

CNN (Convolutional Neural Network)

CNNClassifier cnn = new CNNClassifier()
    .setInputShape(28, 28, 1)
    .addConvLayer(32, 3, 3, "relu")
    .addPoolingLayer(2, 2)
    .addConvLayer(64, 3, 3, "relu")
    .addDenseLayer(128, "relu")
    .setLearningRate(0.001);

RNN (Recurrent Neural Network)

RNNClassifier rnn = new RNNClassifier()
    .setSequenceLength(30)
    .setHiddenSize(128)
    .setNumLayers(2)
    .setCellType("LSTM")
    .setBidirectional(true)
    .setUseAttention(true)
    .setLearningRate(0.001);

🚀 Production Deployment Architecture

Inference Pipeline

// Configure inference
InferenceConfig config = new InferenceConfig(true, 1000, 5000);

// High-performance batch inference
InferenceResult result = NeuralNetworkInferenceEngine.batchInference(model, data, config);

// Real-time streaming inference
StreamingInference stream = NeuralNetworkInferenceEngine.createStreamingInference(model, config);

Model Persistence

// Save model with metadata
ModelPersistence.save(model, "model.superml", metadata);

// Load model for inference
Estimator loadedModel = ModelPersistence.load("model.superml");

Monitoring and Drift Detection

// Monitor model performance
DriftDetector detector = new ModelDriftDetector(originalModel);
boolean hasDrift = detector.detectDrift(newData, newPredictions);

// Data drift monitoring
DataDriftDetector dataDetector = new DataDriftDetector(referenceData);
boolean dataHasDrift = dataDetector.hasDataDrift(currentData);

📊 Framework Metrics

Component Count Description
Modules 21 Specialized components
Algorithms 12+ ML algorithm implementations
Classes 200+ Total framework classes
Examples 11 Comprehensive usage examples
Interfaces 15+ Core abstraction interfaces
Neural Networks 3 MLP, CNN, RNN architectures
Exporters 2 ONNX, PMML format support
Dependencies Minimal Only essential external libs

🎯 Key Benefits

🔧 Developer Experience

  • Scikit-learn API: Familiar interface for Python developers
  • Type Safety: Full Java type checking and IDE support
  • Rich Examples: 11 comprehensive examples covering all use cases
  • Consistent Patterns: Same patterns across all components

🚀 Production Ready

  • High Performance: Optimized algorithms with proper complexity
  • Monitoring: Built-in drift detection and performance tracking
  • Serialization: Multiple persistence formats
  • Deployment: ONNX/PMML export for cross-platform deployment

🧠 Neural Networks

  • Multiple Architectures: MLP, CNN, RNN with LSTM/GRU support
  • Specialized Preprocessing: Network-specific data preparation
  • AutoML Integration: Automated architecture selection
  • Competition Ready: Kaggle workflow integration

📦 Modularity

  • Selective Dependencies: Include only needed components
  • Plugin Architecture: Easy to extend with new algorithms
  • Clean Interfaces: Well-defined component boundaries
  • Composability: Components work seamlessly together

This comprehensive architecture enables SuperML Java to serve as both a learning framework for ML concepts and a production-ready platform for deploying machine learning solutions at scale.