SuperML Java Framework - Architecture Overview
This document provides a comprehensive overview of the SuperML Java 2.0.0 framework architecture, design principles, and internal workings of the 21-module system.
🏗️ High-Level Architecture
┌─────────────────────────────────────────────────────────────────────────────┐
│ SuperML Java 2.0.0 Framework │
│ (21 Modules, 12+ Algorithms Implemented) │
├─────────────────────────────────────────────────────────────────────────────┤
│ 📱 User API Layer │
│ ├── Estimator Interface & Base Classes │
│ ├── Pipeline System & Workflow Management │
│ ├── AutoML Framework (AutoTrainer) │
│ ├── High-Level APIs (KaggleTrainingManager, ModelManager) │
│ └── Dual-Mode Visualization (XChart GUI + ASCII) │
├─────────────────────────────────────────────────────────────────────────────┤
│ 🧠 Algorithm Layer (12+ Implementations) │
│ ├── Linear Models (6) ├── Tree-Based Models (5) │
│ │ ├── LogisticRegression │ ├── DecisionTreeClassifier │
│ │ ├── LinearRegression │ ├── DecisionTreeRegressor │
│ │ ├── Ridge │ ├── RandomForestClassifier │
│ │ ├── Lasso │ ├── RandomForestRegressor │
│ │ ├── SGDClassifier │ └── GradientBoostingClassifier │
│ │ └── SGDRegressor │ │
│ │ ├── Clustering (1) │
│ └── Preprocessing (Multiple) │ └── KMeans (k-means++) │
│ ├── StandardScaler │ │
│ ├── MinMaxScaler │ │
│ ├── RobustScaler │ │
│ └── LabelEncoder │ │
├─────────────────────────────────────────────────────────────────────────────┤
│ 🔧 Core Framework & Infrastructure │
│ ├── Core Foundation ├── Model Selection & AutoML │
│ │ ├── BaseEstimator │ ├── GridSearchCV │
│ │ ├── Interfaces │ ├── RandomizedSearchCV │
│ │ ├── Parameter Mgmt │ ├── CrossValidation │
│ │ └── Validation │ ├── AutoTrainer │
│ │ │ └── HyperparameterOptimizer │
│ ├── Metrics & Evaluation ├── Inference & Production │
│ │ ├── Classification │ ├── InferenceEngine │
│ │ ├── Regression │ ├── ModelPersistence │
│ │ ├── Clustering │ ├── BatchInferenceProcessor │
│ │ └── Statistical │ └── ModelCache │
│ │ │ │
│ └── Data Management └── Monitoring & Drift │
│ ├── Datasets │ ├── DriftDetector │
│ ├── CSV Loading │ ├── DataDriftMonitor │
│ └── Synthetic Data │ └── ModelPerformanceTracker │
├─────────────────────────────────────────────────────────────────────────────┤
│ 🌐 External Integration & Export │
│ ├── Kaggle Integration ├── Cross-Platform Export │
│ │ ├── KaggleClient │ ├── ONNX Export │
│ │ ├── DatasetDownloader │ └── PMML Export │
│ │ └── AutoWorkflows │ │
│ │ ├── Visualization Engine │
│ └── Production Infrastructure │ ├── XChart GUI (Professional) │
│ ├── Logging (Logback) │ └── ASCII Fallback │
│ ├── HTTP Client │ │
│ └── JSON Serialization │ │
└─────────────────────────────────────────────────────────────────────────────┘
�️ 21-Module Architecture
SuperML Java 2.0.0 is built on a sophisticated modular architecture with 21 specialized modules:
Core Foundation (2 modules)
superml-core
: Base interfaces and estimator hierarchysuperml-utils
: Shared utilities and mathematical functions
Algorithm Implementation (3 modules)
superml-linear-models
: 6 linear algorithms (Logistic/Linear Regression, Ridge, Lasso, SGD)superml-tree-models
: 5 tree algorithms (Decision Trees, Random Forest, Gradient Boosting)superml-clustering
: K-Means with advanced initialization
Data Processing (3 modules)
superml-preprocessing
: Feature scaling and encoding (StandardScaler, MinMaxScaler, etc.)superml-datasets
: Built-in datasets and synthetic data generationsuperml-model-selection
: Cross-validation and hyperparameter tuning
Workflow Management (2 modules)
superml-pipeline
: ML pipelines and workflow automationsuperml-autotrainer
: AutoML framework with algorithm selection
Evaluation & Visualization (2 modules)
superml-metrics
: Comprehensive evaluation metricssuperml-visualization
: Dual-mode visualization (XChart GUI + ASCII)
Production (2 modules)
superml-inference
: High-performance model servingsuperml-persistence
: Model saving/loading with statistics
External Integration (4 modules)
superml-kaggle
: Kaggle competition automationsuperml-onnx
: ONNX model exportsuperml-pmml
: PMML model exchangesuperml-drift
: Model drift detection
Distribution (3 modules)
superml-bundle-all
: Complete framework packagesuperml-examples
: 11 comprehensive examplessuperml-java-parent
: Maven build coordination
This modular design allows users to include only the components they need, creating lightweight applications or comprehensive ML pipelines.
�🎯 Design Principles
1. Consistency (scikit-learn API Compatibility)
- Unified Interface: All estimators implement the same
fit()
,predict()
pattern - Parameter Management: Consistent
getParams()
andsetParams()
across all components - Pipeline Compatibility: All estimators work seamlessly in pipeline chains
// Every estimator follows this pattern
Estimator estimator = new SomeAlgorithm()
.setParameter1(value1)
.setParameter2(value2);
estimator.fit(X, y);
double[] predictions = estimator.predict(X);
2. Modularity
- Loose Coupling: Components depend on interfaces, not implementations
- Single Responsibility: Each class has one clear purpose
- Composability: Components can be combined in flexible ways
// Components compose naturally
var pipeline = new Pipeline()
.addStep("scaler", new StandardScaler())
.addStep("classifier", new LogisticRegression());
3. Extensibility
- Plugin Architecture: Easy to add new algorithms by implementing interfaces
- Hook Points: Extension points for custom metrics, validators, etc.
- Configuration: Flexible parameter and configuration system
4. Performance
- Efficient Algorithms: Optimized implementations with proper complexity
- Memory Management: Conscious memory usage and cleanup
- Lazy Evaluation: Computation deferred until needed
5. Production Readiness
- Error Handling: Comprehensive validation and error reporting
- Logging: Professional logging with configurable levels
- Thread Safety: Safe for concurrent use where appropriate
🧬 Algorithm Implementation Architecture
SuperML Java implements 11 machine learning algorithms across 4 categories, each following consistent architectural patterns while optimizing for their specific computational requirements.
Algorithm Categories & Implementations
1. Linear Models (6 algorithms)
org.superml.linear_model/
├── LogisticRegression.java // Binary & multiclass classification
├── LinearRegression.java // OLS regression
├── Ridge.java // L2 regularized regression
├── Lasso.java // L1 regularized regression
├── SoftmaxRegression.java // Direct multinomial classification
└── OneVsRestClassifier.java // Meta-classifier for multiclass
Shared Architecture Pattern:
public abstract class LinearModelBase extends BaseEstimator {
protected double[] weights;
protected double bias;
protected boolean fitted = false;
// Common optimization methods
protected void gradientDescent(double[][] X, double[] y) { /* ... */ }
protected double[] computeGradient(double[][] X, double[] y) { /* ... */ }
protected boolean hasConverged(double currentLoss, double previousLoss) { /* ... */ }
}
2. Tree-Based Models (3 algorithms)
org.superml.tree/
├── DecisionTree.java // CART implementation
├── RandomForest.java // Bootstrap aggregating ensemble
└── GradientBoosting.java // Sequential boosting ensemble
Tree Architecture Pattern:
public abstract class TreeBasedEstimator extends BaseEstimator {
protected List<Node> nodes;
protected int maxDepth;
protected int minSamplesSplit;
protected String criterion;
// Common tree operations
protected Node buildTree(double[][] X, double[] y, int depth) { /* ... */ }
protected double calculateImpurity(double[] y, String criterion) { /* ... */ }
protected Split findBestSplit(double[][] X, double[] y) { /* ... */ }
}
3. Clustering (1 algorithm)
org.superml.cluster/
└── KMeans.java // K-means clustering with k-means++
4. Preprocessing (1 transformer)
org.superml.preprocessing/
└── StandardScaler.java // Feature standardization
Algorithm-Specific Optimizations
Linear Models Optimizations
// LogisticRegression: Automatic multiclass handling
public class LogisticRegression extends BaseEstimator implements Classifier {
@Override
public LogisticRegression fit(double[][] X, double[] y) {
// Detect problem type and choose strategy
if (isMulticlass(y)) {
if (shouldUseSoftmax(y)) {
return fitSoftmax(X, y);
} else {
return fitOneVsRest(X, y);
}
}
return fitBinary(X, y);
}
}
// Ridge/Lasso: Optimized solvers
public class Ridge extends BaseEstimator implements Regressor {
@Override
public Ridge fit(double[][] X, double[] y) {
// Closed-form solution for Ridge
double[][] XTX = MatrixUtils.transpose(X).multiply(X);
MatrixUtils.addDiagonal(XTX, alpha); // Add regularization
this.weights = MatrixUtils.solve(XTX, MatrixUtils.transpose(X).multiply(y));
return this;
}
}
Tree Models Optimizations
// RandomForest: Parallel training
public class RandomForest extends BaseEstimator implements Classifier, Regressor {
@Override
public RandomForest fit(double[][] X, double[] y) {
// Parallel tree construction
trees = IntStream.range(0, nEstimators)
.parallel()
.mapToObj(i -> trainSingleTree(X, y, i))
.collect(Collectors.toList());
return this;
}
}
// GradientBoosting: Sequential with early stopping
public class GradientBoosting extends BaseEstimator implements Classifier, Regressor {
@Override
public GradientBoosting fit(double[][] X, double[] y) {
ValidationSplit split = createValidationSplit(X, y);
for (int iteration = 0; iteration < nEstimators; iteration++) {
// Calculate residuals and fit tree
double[] residuals = calculateResiduals(y, currentPredictions);
DecisionTree tree = new DecisionTree().fit(X, residuals);
trees.add(tree);
// Early stopping check
if (shouldStopEarly(split, iteration)) break;
}
return this;
}
}
🧩 Core Component Design
Base Interfaces (org.superml.core
)
// Foundation interface for all ML components
public interface Estimator {
Map<String, Object> getParams();
Estimator setParams(Map<String, Object> params);
}
// Supervised learning contract
public interface SupervisedLearner extends Estimator {
SupervisedLearner fit(double[][] X, double[] y);
double[] predict(double[][] X);
}
// Specialized interfaces
public interface Classifier extends SupervisedLearner {
double[] predictProba(double[][] X); // Probability estimates
}
public interface Regressor extends SupervisedLearner {
// Inherits fit() and predict() - no additional methods needed
}
Abstract Base Classes
public abstract class BaseEstimator implements Estimator {
protected Map<String, Object> parameters = new HashMap<>();
// Template method pattern for parameter management
@Override
public Map<String, Object> getParams() {
return new HashMap<>(parameters);
}
@Override
public Estimator setParams(Map<String, Object> params) {
this.parameters.putAll(params);
return this;
}
// Hook for parameter validation
protected void validateParameters() {
// Subclasses override to add validation
}
}
🔄 Algorithm Implementation Patterns
SuperML Java uses several design patterns to ensure consistency and maintainability across all 11 implemented algorithms.
1. Linear Models Pattern
All 6 linear models follow a consistent structure with optimized solvers:
public abstract class LinearModelBase extends BaseEstimator implements SupervisedLearner {
// Common model parameters
protected double[] weights;
protected double bias;
protected boolean fitted = false;
// Common hyperparameters
protected double learningRate = 0.01;
protected int maxIterations = 1000;
protected double tolerance = 1e-6;
@Override
public LinearModelBase fit(double[][] X, double[] y) {
validateInput(X, y);
validateParameters();
// Algorithm-specific training
if (hasClosedFormSolution()) {
trainClosedForm(X, y);
} else {
trainIterative(X, y);
}
this.fitted = true;
return this;
}
// Template methods
protected abstract boolean hasClosedFormSolution();
protected abstract void trainClosedForm(double[][] X, double[] y);
protected abstract void trainIterative(double[][] X, double[] y);
}
// Concrete implementations
public class LinearRegression extends LinearModelBase {
protected boolean hasClosedFormSolution() { return true; }
protected void trainClosedForm(double[][] X, double[] y) {
// Normal equation: w = (X^T X)^-1 X^T y
this.weights = MatrixUtils.normalEquation(X, y);
}
}
public class LogisticRegression extends LinearModelBase {
protected boolean hasClosedFormSolution() { return false; }
protected void trainIterative(double[][] X, double[] y) {
// Gradient descent with sigmoid activation
for (int iter = 0; iter < maxIterations; iter++) {
double[] gradient = computeLogisticGradient(X, y);
updateWeights(gradient);
if (hasConverged()) break;
}
}
}
2. Tree-Based Algorithm Pattern
All 3 tree algorithms share common tree-building infrastructure:
public abstract class TreeBasedEstimator extends BaseEstimator {
// Common tree parameters
protected int maxDepth = 10;
protected int minSamplesSplit = 2;
protected int minSamplesLeaf = 1;
protected String criterion = "gini";
protected double minImpurityDecrease = 0.0;
// Tree building methods
protected Node buildTree(double[][] X, double[] y, int depth) {
if (shouldStopSplitting(X, y, depth)) {
return createLeafNode(y);
}
Split bestSplit = findBestSplit(X, y);
if (bestSplit == null) {
return createLeafNode(y);
}
// Recursive tree building
Node node = new Node(bestSplit);
int[] leftIndices = bestSplit.getLeftIndices(X);
int[] rightIndices = bestSplit.getRightIndices(X);
node.left = buildTree(selectRows(X, leftIndices), selectValues(y, leftIndices), depth + 1);
node.right = buildTree(selectRows(X, rightIndices), selectValues(y, rightIndices), depth + 1);
return node;
}
protected abstract Split findBestSplit(double[][] X, double[] y);
protected abstract Node createLeafNode(double[] y);
}
// Concrete implementations
public class DecisionTree extends TreeBasedEstimator implements Classifier, Regressor {
protected Split findBestSplit(double[][] X, double[] y) {
// CART algorithm for finding optimal splits
Split bestSplit = null;
double bestScore = Double.NEGATIVE_INFINITY;
for (int feature = 0; feature < X[0].length; feature++) {
for (double threshold : getPossibleThresholds(X, feature)) {
Split candidate = new Split(feature, threshold);
double score = evaluateSplit(candidate, X, y);
if (score > bestScore) {
bestScore = score;
bestSplit = candidate;
}
}
}
return bestSplit;
}
}
public class RandomForest extends TreeBasedEstimator implements Classifier, Regressor {
private List<DecisionTree> trees = new ArrayList<>();
private int nEstimators = 100;
@Override
public RandomForest fit(double[][] X, double[] y) {
// Parallel bootstrap training
trees = IntStream.range(0, nEstimators)
.parallel()
.mapToObj(i -> trainBootstrapTree(X, y, i))
.collect(Collectors.toList());
fitted = true;
return this;
}
private DecisionTree trainBootstrapTree(double[][] X, double[] y, int seed) {
// Bootstrap sampling
BootstrapSample sample = createBootstrapSample(X, y, seed);
// Train tree with random feature selection
DecisionTree tree = new DecisionTree()
.setMaxFeatures(calculateMaxFeatures())
.setRandomState(seed);
return tree.fit(sample.X, sample.y);
}
}
3. Ensemble Algorithm Pattern
Ensemble methods (RandomForest, GradientBoosting) follow specialized patterns:
public abstract class EnsembleEstimator extends BaseEstimator {
protected List<? extends BaseEstimator> baseEstimators;
protected int nEstimators = 100;
// Template method for ensemble training
@Override
public EnsembleEstimator fit(double[][] X, double[] y) {
initializeEnsemble();
for (int i = 0; i < nEstimators; i++) {
BaseEstimator estimator = trainBaseEstimator(X, y, i);
addToEnsemble(estimator);
if (shouldStopEarly(i)) break;
}
fitted = true;
return this;
}
protected abstract BaseEstimator trainBaseEstimator(double[][] X, double[] y, int iteration);
protected abstract void addToEnsemble(BaseEstimator estimator);
protected abstract boolean shouldStopEarly(int iteration);
}
// Sequential ensemble (Boosting)
public class GradientBoosting extends EnsembleEstimator {
private double learningRate = 0.1;
private double[] currentPredictions;
protected BaseEstimator trainBaseEstimator(double[][] X, double[] y, int iteration) {
// Calculate residuals from current ensemble
double[] residuals = calculateResiduals(y, currentPredictions);
// Train tree to predict residuals
DecisionTree tree = new DecisionTree(criterion, maxDepth);
tree.fit(X, residuals);
// Update ensemble predictions
updatePredictions(tree.predict(X));
return tree;
}
protected boolean shouldStopEarly(int iteration) {
// Early stopping based on validation score
if (validationScoring && iteration > minIterations) {
return !isValidationScoreImproving();
}
return false;
}
}
4. Meta-Learning Pattern
OneVsRestClassifier demonstrates the meta-learning pattern:
public class OneVsRestClassifier extends BaseEstimator implements Classifier {
private BaseEstimator baseClassifier;
private List<BaseEstimator> binaryClassifiers;
private double[] classes;
@Override
public OneVsRestClassifier fit(double[][] X, double[] y) {
classes = findUniqueClasses(y);
binaryClassifiers = new ArrayList<>(classes.length);
// Train one binary classifier per class
for (double targetClass : classes) {
double[] binaryY = createBinaryTarget(y, targetClass);
BaseEstimator classifier = cloneBaseClassifier();
classifier.fit(X, binaryY);
binaryClassifiers.add(classifier);
}
fitted = true;
return this;
}
@Override
public double[][] predictProba(double[][] X) {
double[][] probabilities = new double[X.length][classes.length];
// Get probabilities from each binary classifier
for (int i = 0; i < classes.length; i++) {
double[][] binaryProbs = ((Classifier) binaryClassifiers.get(i)).predictProba(X);
for (int j = 0; j < X.length; j++) {
probabilities[j][i] = binaryProbs[j][1]; // Positive class probability
}
}
// Normalize probabilities
return normalizeProbabilities(probabilities);
}
}
📊 Data Flow Architecture
1. Pipeline Data Flow
The framework supports scikit-learn compatible pipelines for chaining preprocessing and modeling steps:
Input Data → Preprocessor 1 → Preprocessor 2 → ... → Estimator → Predictions
↓ ↓ ↓ ↓
Validation Transform Transform Final Model
public class Pipeline extends BaseEstimator implements SupervisedLearner {
private List<PipelineStep> steps = new ArrayList<>();
@Override
public Pipeline fit(double[][] X, double[] y) {
double[][] currentX = X;
// Fit and transform each preprocessing step
for (int i = 0; i < steps.size() - 1; i++) {
PipelineStep step = steps.get(i);
step.estimator.fit(currentX, y);
currentX = step.estimator.transform(currentX);
}
// Fit final estimator
PipelineStep finalStep = steps.get(steps.size() - 1);
finalStep.estimator.fit(currentX, y);
return this;
}
@Override
public double[] predict(double[][] X) {
double[][] currentX = X;
// Transform through all preprocessing steps
for (int i = 0; i < steps.size() - 1; i++) {
PipelineStep step = steps.get(i);
currentX = step.estimator.transform(currentX);
}
// Predict with final estimator
PipelineStep finalStep = steps.get(steps.size() - 1);
return finalStep.estimator.predict(currentX);
}
}
2. Cross-Validation Data Flow
Original Dataset
↓
Split into K folds
↓
For each fold:
Train Set → Fit Model → Validate Set → Score
↓
Aggregate Scores → Final CV Score
3. Inference Engine Architecture
Production model serving with the InferenceEngine:
┌─────────────────────────────────────────┐
│ Client Request │
├─────────────────────────────────────────┤
│ InferenceEngine │
│ ├── Model Loading & Caching │
│ ├── Input Validation │
│ ├── Feature Preprocessing │
│ ├── Model Prediction │
│ ├── Output Postprocessing │
│ └── Performance Monitoring │
├─────────────────────────────────────────┤
│ ModelPersistence │
│ ├── Model Serialization │
│ ├── Metadata Management │
│ └── Version Control │
├─────────────────────────────────────────┤
│ Model Storage │
│ ├── File System │
│ ├── Model Registry │
│ └── Backup & Recovery │
└─────────────────────────────────────────┘
public class InferenceEngine {
private Map<String, LoadedModel> modelCache = new ConcurrentHashMap<>();
private Map<String, InferenceMetrics> metricsMap = new ConcurrentHashMap<>();
public double[] predict(String modelId, double[][] features) {
LoadedModel model = getLoadedModel(modelId);
InferenceMetrics metrics = metricsMap.get(modelId);
long startTime = System.nanoTime();
try {
// Validate input
validateInput(features, model);
// Make predictions
double[] predictions = ((SupervisedLearner) model.model).predict(features);
// Update metrics
long inferenceTime = System.nanoTime() - startTime;
metrics.recordInference(features.length, inferenceTime);
return predictions;
} catch (Exception e) {
metrics.recordError();
throw new InferenceException("Prediction failed: " + e.getMessage(), e);
}
}
public CompletableFuture<Double> predictAsync(String modelId, double[] features) {
return CompletableFuture.supplyAsync(() -> {
double[][] batchFeatures = {features};
double[] predictions = predict(modelId, batchFeatures);
return predictions[0];
});
}
}
🔌 External Integration Architecture
Kaggle Integration Layer
// Three-tier architecture for Kaggle integration
┌─────────────────────────────────────────┐
│ KaggleTrainingManager │ ← High-level ML workflows
│ ├── Dataset search & selection │
│ ├── Automated training pipelines │
│ └── Result analysis & comparison │
├─────────────────────────────────────────┤
│ KaggleIntegration │ ← API client layer
│ ├── REST API communication │
│ ├── Authentication management │
│ ├── Dataset download & extraction │
│ └── Error handling & retry logic │
├─────────────────────────────────────────┤
│ HTTP Client Infrastructure │ ← Low-level networking
│ ├── Apache HttpClient5 │
│ ├── JSON processing (Jackson) │
│ ├── File compression (Commons) │
│ └── Connection pooling & timeouts │
└─────────────────────────────────────────┘
Dependency Injection Pattern
// Components depend on interfaces, not implementations
public class KaggleTrainingManager {
private final KaggleIntegration kaggleApi;
private final List<SupervisedLearner> algorithms;
private final MetricsCalculator metrics;
public KaggleTrainingManager(KaggleIntegration kaggleApi) {
this.kaggleApi = kaggleApi;
this.algorithms = createDefaultAlgorithms();
this.metrics = new DefaultMetricsCalculator();
}
// Easy to test and extend
public KaggleTrainingManager(KaggleIntegration kaggleApi,
List<SupervisedLearner> algorithms,
MetricsCalculator metrics) {
this.kaggleApi = kaggleApi;
this.algorithms = algorithms;
this.metrics = metrics;
}
}
🧪 Testing Architecture
Test Structure
src/test/java/com/superml/
├── core/ # Interface and base class tests
├── linear_model/ # Algorithm-specific tests
│ ├── unit/ # Unit tests for individual methods
│ ├── integration/ # Integration tests with real data
│ └── performance/ # Performance and benchmark tests
├── pipeline/ # Pipeline system tests
├── datasets/ # Data loading and Kaggle tests
└── utils/ # Test utilities and fixtures
Test Patterns
// Test base class for algorithm tests
public abstract class AlgorithmTestBase {
protected double[][] X;
protected double[] y;
@BeforeEach
void setUp() {
// Load standard test datasets
var dataset = Datasets.makeClassification(100, 4, 2, 42);
this.X = dataset.X;
this.y = dataset.y;
}
@Test
void testFitPredict() {
var algorithm = createAlgorithm();
// Should not throw exceptions
algorithm.fit(X, y);
double[] predictions = algorithm.predict(X);
// Basic assertions
assertThat(predictions).hasSize(X.length);
assertThat(algorithm.isFitted()).isTrue();
}
protected abstract SupervisedLearner createAlgorithm();
}
📈 Performance Considerations
Algorithm-Specific Performance Optimizations
Linear Models Performance
// Optimized matrix operations for different linear models
public class LinearModelOptimizations {
// LinearRegression: Closed-form solution
public static double[] normalEquation(double[][] X, double[] y) {
// Use efficient matrix operations: (X^T X)^-1 X^T y
double[][] XTX = MatrixUtils.matrixMultiply(MatrixUtils.transpose(X), X);
double[][] XTXInv = MatrixUtils.invert(XTX);
double[] XTy = MatrixUtils.vectorMatrixMultiply(MatrixUtils.transpose(X), y);
return MatrixUtils.vectorMatrixMultiply(XTXInv, XTy);
}
// Ridge: Regularized normal equation
public static double[] ridgeSolution(double[][] X, double[] y, double alpha) {
double[][] XTX = MatrixUtils.matrixMultiply(MatrixUtils.transpose(X), X);
MatrixUtils.addDiagonal(XTX, alpha); // Add regularization
double[][] XTXInv = MatrixUtils.invert(XTX);
double[] XTy = MatrixUtils.vectorMatrixMultiply(MatrixUtils.transpose(X), y);
return MatrixUtils.vectorMatrixMultiply(XTXInv, XTy);
}
// Lasso: Coordinate descent optimization
public static double[] coordinateDescent(double[][] X, double[] y, double alpha, int maxIter) {
double[] weights = new double[X[0].length];
for (int iter = 0; iter < maxIter; iter++) {
boolean converged = true;
for (int j = 0; j < weights.length; j++) {
double oldWeight = weights[j];
weights[j] = softThreshold(coordinateUpdate(X, y, weights, j), alpha);
if (Math.abs(weights[j] - oldWeight) > 1e-6) {
converged = false;
}
}
if (converged) break;
}
return weights;
}
}
Tree Models Performance
// Optimized tree operations
public class TreeOptimizations {
// RandomForest: Parallel tree training
public static List<DecisionTree> trainTreesParallel(double[][] X, double[] y, int nTrees) {
return IntStream.range(0, nTrees)
.parallel()
.mapToObj(i -> {
// Bootstrap sampling
BootstrapSample sample = createBootstrapSample(X, y, i);
// Train tree with random features
DecisionTree tree = new DecisionTree()
.setRandomState(i)
.setMaxFeatures("sqrt");
return tree.fit(sample.X, sample.y);
})
.collect(Collectors.toList());
}
// Efficient split finding for large datasets
public static Split findBestSplitOptimized(double[][] X, double[] y, int[] features) {
Split bestSplit = null;
double bestScore = Double.NEGATIVE_INFINITY;
// Pre-sort features for efficient threshold selection
Map<Integer, int[]> sortedIndices = new HashMap<>();
for (int feature : features) {
sortedIndices.put(feature, sortIndicesByFeature(X, feature));
}
for (int feature : features) {
int[] sorted = sortedIndices.get(feature);
// Use pre-sorted indices for O(n) threshold evaluation
for (int i = 1; i < sorted.length; i++) {
if (X[sorted[i]][feature] != X[sorted[i-1]][feature]) {
double threshold = (X[sorted[i]][feature] + X[sorted[i-1]][feature]) / 2.0;
Split candidate = new Split(feature, threshold);
double score = evaluateSplitFast(candidate, X, y, sorted);
if (score > bestScore) {
bestScore = score;
bestSplit = candidate;
}
}
}
}
return bestSplit;
}
}
Memory Management
// Efficient matrix operations with memory reuse
public class MatrixUtils {
// Thread-local arrays for temporary calculations
private static final ThreadLocal<double[]> TEMP_ARRAY =
ThreadLocal.withInitial(() -> new double[1000]);
private static final ThreadLocal<double[][]> TEMP_MATRIX =
ThreadLocal.withInitial(() -> new double[100][100]);
public static double dotProduct(double[] a, double[] b) {
// Reuse thread-local temporary arrays
double[] temp = TEMP_ARRAY.get();
if (temp.length < a.length) {
temp = new double[a.length];
TEMP_ARRAY.set(temp);
}
// SIMD-friendly loop
double result = 0.0;
for (int i = 0; i < a.length; i++) {
result += a[i] * b[i];
}
return result;
}
// Memory-efficient matrix multiplication
public static double[][] matrixMultiply(double[][] A, double[][] B) {
int rows = A.length;
int cols = B[0].length;
int inner = A[0].length;
double[][] result = new double[rows][cols];
// Cache-friendly loop order (ikj instead of ijk)
for (int i = 0; i < rows; i++) {
for (int k = 0; k < inner; k++) {
double aik = A[i][k];
for (int j = 0; j < cols; j++) {
result[i][j] += aik * B[k][j];
}
}
}
return result;
}
}
Computation Optimization
// Vectorized operations for better performance
public class VectorOperations {
// Parallel processing for large datasets
public static double[] parallelTransform(double[][] X, Function<double[], Double> transform) {
return Arrays.stream(X)
.parallel()
.mapToDouble(transform::apply)
.toArray();
}
// Optimized ensemble predictions
public static double[] ensemblePredict(List<BaseEstimator> estimators, double[][] X) {
// Parallel prediction from multiple models
List<double[]> predictions = estimators.parallelStream()
.map(estimator -> estimator.predict(X))
.collect(Collectors.toList());
// Average predictions
double[] result = new double[X.length];
for (int i = 0; i < X.length; i++) {
double sum = 0.0;
for (double[] pred : predictions) {
sum += pred[i];
}
result[i] = sum / predictions.size();
}
return result;
}
// SIMD-friendly operations
public static void addVectors(double[] a, double[] b, double[] result) {
// Modern JVMs can vectorize simple loops like this
for (int i = 0; i < a.length; i++) {
result[i] = a[i] + b[i];
}
}
// Optimized softmax for multiclass classification
public static double[] softmax(double[] logits) {
// Numerical stability: subtract max to prevent overflow
double max = Arrays.stream(logits).max().orElse(0.0);
double[] exps = new double[logits.length];
double sum = 0.0;
for (int i = 0; i < logits.length; i++) {
exps[i] = Math.exp(logits[i] - max);
sum += exps[i];
}
for (int i = 0; i < exps.length; i++) {
exps[i] /= sum;
}
return exps;
}
}
Performance Benchmarks by Algorithm Category
Algorithm Category | Training Time | Prediction Time | Memory Usage | Scalability |
---|---|---|---|---|
Linear Models | O(n×p×i) | O(p) | O(p) | Excellent |
Decision Trees | O(n×p×log n) | O(log n) | O(n) | Good |
Ensemble Models | O(t×n×p×log n) | O(t×log n) | O(t×n) | Good |
Clustering | O(n×k×i×p) | O(k×p) | O(n×p) | Good |
Where: n=samples, p=features, i=iterations, t=trees, k=clusters
🔒 Error Handling Strategy
Layered Error Handling
// Domain-specific exceptions
public class SuperMLException extends RuntimeException {
public SuperMLException(String message) { super(message); }
public SuperMLException(String message, Throwable cause) { super(message, cause); }
}
public class ModelNotFittedException extends SuperMLException {
public ModelNotFittedException() {
super("Model must be fitted before making predictions");
}
}
// Validation layer
public class ValidationUtils {
public static void validateInput(double[][] X, double[] y) {
if (X == null || y == null) {
throw new SuperMLException("Input data cannot be null");
}
if (X.length != y.length) {
throw new SuperMLException("X and y must have same number of samples");
}
// More validations...
}
}
🔧 Configuration Management
Hierarchical Configuration
// Global framework configuration
public class SuperMLConfig {
private static final Properties config = new Properties();
static {
// Load from multiple sources
loadFromClasspath("superml-defaults.properties");
loadFromFile("superml.properties");
loadFromEnvironment();
}
public static double getDouble(String key, double defaultValue) {
String value = config.getProperty(key);
return value != null ? Double.parseDouble(value) : defaultValue;
}
}
📊 Current Framework Statistics
Implementation Status (as of latest version)
📈 Algorithm Implementation Status
├── Total Algorithms: 11 ->
├── Linear Models: 6/6 ->
│ ├── LogisticRegression ->
│ ├── LinearRegression ->
│ ├── Ridge ->
│ ├── Lasso ->
│ ├── SoftmaxRegression ->
│ └── OneVsRestClassifier ->
├── Tree-Based Models: 3/3 ->
│ ├── DecisionTree ->
│ ├── RandomForest ->
│ └── GradientBoosting ->
├── Clustering: 1/1 ->
│ └── KMeans ->
└── Preprocessing: 1/1 ->
└── StandardScaler ->
Codebase Metrics
Metric | Value |
---|---|
Total Classes | 40+ |
Lines of Code | 10,000+ |
Test Classes | 70+ |
Documentation Files | 20+ |
Example Programs | 25+ |
Test Coverage | 85%+ |
Package Structure
src/main/java/org/superml/
├── core/ # 6 interfaces + BaseEstimator
│ ├── BaseEstimator.java
│ ├── Estimator.java
│ ├── SupervisedLearner.java
│ ├── UnsupervisedLearner.java
│ ├── Classifier.java
│ └── Regressor.java
├── linear_model/ # 6 linear algorithms
│ ├── LogisticRegression.java
│ ├── LinearRegression.java
│ ├── Ridge.java
│ ├── Lasso.java
│ ├── SoftmaxRegression.java
│ └── OneVsRestClassifier.java
├── tree/ # 3 tree-based algorithms
│ ├── DecisionTree.java
│ ├── RandomForest.java
│ └── GradientBoosting.java
├── cluster/ # 1 clustering algorithm
│ └── KMeans.java
├── preprocessing/ # 1 preprocessing tool
│ └── StandardScaler.java
├── model_selection/ # Model selection utilities
│ ├── GridSearchCV.java
│ ├── CrossValidation.java
│ ├── ModelSelection.java
│ └── HyperparameterTuning.java
├── pipeline/ # Pipeline system
│ └── Pipeline.java
├── inference/ # Inference engine
│ ├── InferenceEngine.java
│ ├── InferenceMetrics.java
│ └── BatchInferenceProcessor.java
├── persistence/ # Model persistence
│ ├── ModelPersistence.java
│ ├── ModelManager.java
│ └── ModelPersistenceException.java
├── datasets/ # Data handling
│ ├── Datasets.java
│ ├── DataLoaders.java
│ ├── KaggleIntegration.java
│ └── KaggleTrainingManager.java
├── metrics/ # Evaluation metrics
│ └── Metrics.java
└── examples/ # Example implementations
└── TreeAlgorithmsExample.java
Algorithm Capability Matrix
Algorithm | Classification | Regression | Multiclass | Probability | Feature Importance | Parallel | Memory Efficient |
---|---|---|---|---|---|---|---|
LogisticRegression | -> | ❌ | -> | -> | -> | ❌ | -> |
LinearRegression | ❌ | -> | ❌ | ❌ | -> | ❌ | -> |
Ridge | ❌ | -> | ❌ | ❌ | -> | ❌ | -> |
Lasso | ❌ | -> | ❌ | ❌ | -> | ❌ | -> |
SoftmaxRegression | -> | ❌ | -> | -> | -> | ❌ | -> |
OneVsRestClassifier | -> | ❌ | -> | -> | Inherited | -> | -> |
DecisionTree | -> | -> | -> | -> | -> | ❌ | -> |
RandomForest | -> | -> | -> | -> | -> | -> | -> |
GradientBoosting | -> | -> | ⚠️* | -> | -> | ❌ | -> |
KMeans | ❌ | ❌ | N/A | ❌ | ❌ | ❌ | -> |
StandardScaler | N/A | N/A | N/A | N/A | ❌ | ❌ | -> |
*Note: GradientBoosting currently supports binary classification (multiclass planned for future release)
🚀 Architectural Strengths
1. Consistency & Interoperability
- All algorithms implement common interfaces
- scikit-learn compatible API design
- Seamless pipeline integration
- Consistent parameter management
2. Performance & Scalability
- Optimized algorithm implementations
- Parallel processing where applicable
- Memory-efficient data structures
- Production-ready performance
3. Extensibility & Maintainability
- Clear separation of concerns
- Template method patterns
- Plugin architecture for new algorithms
- Comprehensive testing framework
4. Enterprise Ready
- Professional error handling
- Structured logging with SLF4J
- Model persistence and versioning
- Production inference capabilities
5. Developer Experience
- Extensive documentation
- Rich example collection
- Type-safe APIs
- Intuitive method chaining
This architecture provides a solid foundation for both research and production machine learning applications, with proven scalability and maintainability across 11 different algorithm implementations and their supporting infrastructure.